Презентация по физике история создания конденсатора. Конденсаторы их роль и функции. равна единице, если при сообщении им зарядов

Cлайд 1

Выполнил: Каретко Дима, ученик 10 «А» Руководитель: Попова Ирина Александровна, учитель физики Белово 2011 Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 30 г. Белово» Конденсаторы Миипроект по физике

Cлайд 2

План Введение Конденсаторы Основные параметры конденсатора Классификация конденсаторов Применение конденсаторов Вывод Литература

Cлайд 3

Введение Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.

Cлайд 4

Конденсаторы Конденсатор - двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля.

Cлайд 5

Основные параметры конденсатора: 1)Ёмкость: в обозначении конденсатора фигурирует ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость- определяет по электрическим свойствам. 2)Удельною емкостью называют отношением ёмкости к объёму (или массе) диэлектрика. 3) Номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. 4)Полярность: многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком.

Cлайд 6

Классификация конденсаторов Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме). Конденсаторы с газообразным диэлектриком. Конденсаторы с жидким диэлектриком. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические), слюдяные, тонкослойные из неорганических плёнок. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные. Электролитические и оксидно-полупроводниковые конденсаторы (Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью). Постоянные конденсаторы - основной класс конденсаторов, не меняющие своей ёмкости. Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости. Подстроечные конденсаторы - конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке.

Cлайд 7

Применение конденсаторов Конденсаторы используются для построения различных цепей с частотно-зависимыми свойствами При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках. Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии. В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник. Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора. ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости) ИП влажности древесины В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит.

(лат. condenso - уплотняю, сгущаю) - теплообменный аппарат, теплообменник, в котором осуществляется процесс конденсации, процесс фазового перехода теплоносителя из парообразного состояния в жидкое за счёт отвода тепла более холодным теплоносителем.

Принцип действия

В конденсатор обычно поступают перегретые пары теплоносителя, которые охлаждаются до температуры насыщения и, конденсируясь, переходят в жидкую фазу. Для конденсации пара необходимо отвести от каждой единицы его массы теплоту, равную удельной теплоте конденсации. В зависимости от

охлаждающей среды (теплоносителя) конденсаторы могут быть разделены на следующие типы: с водяным охлаждением, с водо-воздушным (испарительным) охлаждением, с воздушным охлаждением, с охлаждением кипящим холодильным агентом в конденсаторе-испарителе, с охлаждением технологическим продуктом. Выбор типа конденсатора зависит от условий применения.

Применение

Конденсаторы применяются на тепловых и атомных электростанциях для конденсации отработавшего в турбинах пара. При этом на каждую тонну конденсирующегося пара приходится около 50 тонн охлаждающей воды. Поэтому потребность ТЭС и особенно АЭС в воде очень велика - до 600 тысяч м³/час.

В холодильных установках конденсаторы используются для конденсации паров хладагентов, например, фреона. В химической технологии конденсаторы используют для получения чистых веществ (дистиллятов) после перегонки.

Принцип конденсации успешно применяется также для разделения смеси паров различных веществ, так как их конденсация происходит при различных температурах.

Разновидности

По принципу теплообмена конденсаторы разделяются на смешивающие (конденсаторы смешения) и поверхностные. В смешивающих конденсаторах водяной пар непосредственно соприкасается с охлаждающей водой, а в поверхностных пары рабочего тела отделены

стенкой от охлаждающего теплоносителя. Поверхностные конденсаторы разделяются по

следующим особенностям:

по направлению потоков теплоносителя: прямоточные, противоточные и с поперечным потоком теплоносителей;

по количеству изменений направления движения теплоносителя - на одноходовые, двухходовые и др.;

по количеству последовательно соединённых корпусов - одноступенчатые, двухступенчатые и др.

по конструктивному исполнению: кожухотрубные, пластинчатые и др.

Конденсатор холодильника«Минск-10»

Пастеризатор

Процесс пастеризации представляет собой доведение температуры продукта до определенного технологическими требованиями значения и выдержке его при этой температуре некоторое время, а также последующее охлаждение продукта до температуры хранения.

Пастеризация производится при помощи специального оборудования - пастеризатора .

Областью применения данного оборудования является пастеризация (тепловая обработка) и охлаждение в потоке различных пищевых продуктов: пастеризация молока, сливок, соков, вина, пива, кваса и др.

Под режимами пастеризации всегда понимается соотношение времени выдержки при температуре пастеризации и собственно температура пастеризации. Применительно к молочной промышленности: Асептическая пастеризация - 4 секунды 137 градусов цельсия. Неасептическая пастеризация отличается большим разнообразием параметров, например сырье для производства йогурта обычно пастеризуют при следующих параметрах: выдержка 300 секунд, температура 97 градусов цельсия. Если сырье предварительно подвергалось бактофугированию, то можно использовать значительно более мягкие режимы, например выдержка 120 секунд и температура 67 градусов цельсия.

Виды пастеризаторов

По виду рабочего цикла пастеризаторы можно разделить на периодические (дискретные) и непрерывного действия.

Пастеризаторы дискретного действия ввиду больших эксплуатационных затрат редко применяются в промышленности, например, автоклавы в консервной промышленности.

Пастеризаторы непрерывного действия широко применяются в молочной, соковой, пивоваренной промышленности. Пастеризаторы дискретного действия в настоящий момент широко используются при производстве кетчупов.

По типу обрабатываемого сырья пастеризаторы можно разделить на пастеризаторы жидкостей, паст и пастеризаторы заключенной в тару продукции.

По типу условий пастеризации - на асептические (стерильные) и неасептические (нестерильные). Асептические пастеризаторы можно разделить на пастеризаторы с непосредственным нагревом продукта (обычно стерильным паром), и с нагревом продукта с помощью теплообменного агрегата ("горячий контур"). В пастеризаторах с непосредственным нагревом продукта охлаждение продукта производится в вакууных камерах (деаэраторах), в пастеризаторах с нагревом продукта с помощью теплообменного агрегата - в секции регенерации теплообменника (не всегда, встречаются конструкции в которых охлаждение производится оборотной/ледяной водой).

Пластинчатые пастеризаторы применяются для тепловой обработки продуктов с пониженной вязкостью (молоко, соки, чай, напитки и т.д.) в тонкослойном непрерывном потоке.

Трубчатые пастеризаторы применяются для обработки продуктов различной степени вязкости (молоко, молочные напитки, сливки, смесь мороженого, кремы, майонезы, кетчупы и т.д.) в закрытом потоке. Трубчатые теплообменные аппараты выгодно отличаются по цене и более просты в изготовлении по сравнению с пластинчатыми теплообменниками. Использование установки дает возможность обрабатывать продукт при высоком давлении, температуре, скорости движения; а также полностью исключить попадание одной среды в другую. Установка обладает хорошей термической активностью.

Скребковые пастеризаторы применяются для пастеризации и охлаждения продуктов с высокой вязкостью (жирные сливки, творожная смесь, смесь мороженого, томатная паста, кетчупы). Скребковые теплообменники обеспечивают равномерность нагрева или охлаждения продукта за счет его принудительного перемешивания в канале теплообменника.

Испаритель

- теплообменный аппарат, в котором осуществляется процесс фазового перехода жидкого теплоносителя в парообразное и газообразное состояние за счёт подвода от более горячего теплоносителя. Таким горячим теплоносителем обычно являются вода, воздух, рассол или

газообразные, жидкие или твердые технологические продукты. Когда процесс фазового перехода происходит на поверхности жидкости, то это называется испарением. Если процесс происходит на всей глубине жидкости с образованием паровых пузырьков, то это называется кипением. Фазовый переход может происходить как с однородной жидкостью, так и со смесью жидких компонентов.

Применение

В теплоэнергетике испаритель предназначен для выработки дистиллята, восполняющего потери конденсата в паросиловых установках. Существуют испарители, обогреваемые дымовыми газами, уходящими из котельных агрегатов. Получаемый в таких испарителях пар может быть использован как для восполнения потерь конденсата, так и для теплоснабжения. Испарители большой производительности находят применение на расположенных у морей и океанов атомных электростанциях для опреснения морской воды. Испарители, называемые иногда опреснителями, устанавливают на морских судах. И являются основными элементами холодильных установок, в которых испаряется холодильный агент, предназначенный для непосредственного (или посредством рассола) охлаждения холодильных камер.

Классификация

По характеру охлаждаемой среды (по назначению) различают испарители для охлаждения жидких хладоносителей и технологических продуктов; для охлаждения воздуха и газообразных технологических продуктов, т. е.когда происходит непосредственный

теплообмен между охлаждаемым объектом и хладагентом; для охлаждения твердых технологических продуктов; испарители-конденсаторы .

В зависимости от условий циркуляции охлаждаемой жидкости испарители могут быть закрытого или открытого типов. Испарителями закрытого типа называют испарители с

закрытой системой циркуляции охлаждаемой жидкости, прокачиваемой насосом. К ним относятся кожухотрубные и кожухозмеевиковые испарители. Испарителями открытого

типа называют испарители с открытым уровнем охлаждаемой жидкости, циркуляция которой создается мешалкой. К ним относятся вертикально-трубные и панельные испарители.

По характеру заполнения хладагентом испарители разделяют на затопленные и незатопленные. К последним относятся оросительный, кожухотрубный с кипением в трубах, а также змеевиковый испарители с верхней подачей жидкости.

Испарители также разделяют на группы в зависимости от того, на какой поверхности кипит хладагент: в межтрубном пространстве (кожухотрубные затопленные и оросительные) или внутри труб и каналов (кожухотрубные с кипением в трубах, вертикально-трубные и панельные). Последнее разделение важно с точки зрения выбора модели для расчета теплоотдачи кипящей жидкости.

По характеру движения хладагента различают испарители с естественной и вынужденной циркуляцией.

Принцип действия

Кожухотрубный испаритель состоит из широкого горизонтального цилиндра (кожуха), внутри которого находятся трубные решетки. Эти решетки представляют собой набор тонких медных трубок, по которым течет хладоноситель (вода). Диаметр таких трубок, в среднем, составляет 20–25 см., в них

хладоноситель перемещается со скоростью до 2 м/с. В пространстве между трубными решетками находится кипящий хладагент . К обоим краям решетки крепятся патрубки, которые подсоединяются

к системе водоохлаждения. Для повышения теплообмена на наружной части решетки имеется оребрение.В процессе работы хладагент по трубкам перемещается из нижней части испарителя вверх. Во время своего передвижения он охлаждает воду, которая циркулирует с внешней стороны трубок. Разделительные перегородки внутри цилиндра обеспечивают движущейся воде скорость от 0.5 до3 м/с.

Конструкция пластинчатого испарителя представляет собой несколько рядов одноразмерных стальных пластин , соединенных между собой по принципу «елочки». Хладоноситель и хладагент в таком испарителе движутся не параллельно друг другу, а навстречу, каждый внутри своего независимого контура. По сравнению с другими типами испарителей, пластинчатые обладают рядом неоспоримых преимуществ: они отличаются небольшими габаритами; менее подвержены поломкам, а в случая возникновения неисправностей устойчивы к замораживанию; имеют высокую производительность.

9 класс 5klass.net

Слайд 2

Цель урока:

Сформировать понятие электроемкости; Ввести новую характеристику – электроемкость конденсатора, и ее единицу измерения. Рассмотреть виды конденсаторов и где они применяются

Слайд 3

Повторим… 1 вариант 1) Кем и когда была создана теория электромагнитного поля и в чем заключается ее суть. 2) Перечислите виды электромагнитных волн. Инфракрасное излучение, его свойства и влияние на организм человека. 2 вариант 1) Что называют электромагнитной волной?. Какими основными свойствами обладает электромагнитная волна? 2) Перечислите виды электромагнитных волн. Рентгенвоское излучение, его свойства и влияние на организм человека.

Слайд 4

Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Электроемкость конденсатора равна где q – заряд положительной обкладки, U – напряжение между обкладками. Электроемкость конденсатора зависит от его геометрической конструкции и электрической проницаемости заполняющего его диэлектрика и не зависит от заряда обкладок. Конденсатор

Слайд 5

Электроёмкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. Единица измерения ёмкости – фарад – [ Ф ] Это надо знать:

Слайд 6

Электроемкость плоского конденсатора равна где S– площадь каждой из обкладок, d– расстояние между ними, ε – диэлектрическая проницаемость вещества между обкладками. При этом предполагается, что геометрические размеры пластин велики по сравнению с расстоянием между ними. Запомните, что…

Слайд 7

Энергия конденсатора

W = qU/2 W=q2 /2C U

Слайд 8

Типы конденсаторов

Слайд 9

В настоящее время широко применяются бумажные конденсаторы для напряжений в несколько сот вольт и ёмкостью в несколько микрофарад. В таких конденсаторах обкладками служат две длинные ленты тонкой металлической фольги, а изолирующей прокладкой между ними – несколько более широкая бумажная лента, пропитанная парафином. Бумажной лентой покрывается одна из обкладок, затем ленты туго свёртываются в рулон и укладываются в специальный корпус. Такой конденсатор, имея размеры спичечного коробка, обладает ёмкостью 10мкФ (металлический шар такой ёмкости имел бы радиус 90км). Бумажный конденсатор

Слайд 10

Керамический конденсатор В радиотехнике применяют керамические конденсаторы. Диэлектриком в них служит специальная керамика. Обкладки керамических конденсаторов изготавливаются в виде слоя серебра, нанесённого на поверхность керамики и защищённого слоем лака. Керамические конденсаторы изготавливаются на ёмкости о единиц до сотен пикофарад и на напряжения от сотен до тысяч вольт.

Слайд 11

Конденсатор переменной емкости.

Запишите устройство конденсатора

Слайд 12

Запишите какова их электроемкость.

Слайд 13

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

  • Слайд 14

    Какова электроемкость конденсатора, если заряд конденсатора 10 нКл, а разность потенциалов 20 кВ. А теперь задача…

    Слайд 15

    Конденсатору емкостью 10 мкФ сообщили заряд 4 мкКл. Какова энергия заряженного конденсатора. А теперь задача…


    Питер ван Мушенбрук ()





    Что такое конденсатор? Конденсатор (от лат. condense «уплотнять», «сгущать») двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.лат.двухполюсникёмкостипроводимостью диэлектриком


    Свойства конденсатора Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещенияцепи постоянного тока переменного токатоком смещения


    В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом:метода комплексных амплитуд импедансом Резонансная частота конденсатора равна: Резонансная частота При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 23 раза ниже резонанснойкатушка индуктивности




    Основные параметры. Ёмкость Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад. ёмкостьэлектрический зарядзаряд напряжениюфарад Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулойСИ


    Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счет разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна


    Удельная ёмкость. Конденсаторы также характеризуются удельной ёмкостью отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.


    Плотность энергии Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 емкостью мкФ x 450 В и массой 1.9кг плотность энергии составляет 639Дж/кг или 845Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гауссапушке Гаусса


    Номинальное напряжение Другой, не менее важной характеристикой конденсаторов является номинальное напряжение значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.температурыскоростиносителей заряда


    Полярность Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.электролитические электролитавзрыва



  • 
    Top