Программные средства географических информационных систем. Программное обеспечение и технологии геоинформационных систем: Учебное пособие Прикладное программное обеспечение для гис

Министерство общего и профессионального образования Российской Федерации Красноярский государственный университет Исследовательская кафедра биофизики Институт вычислительного моделирования СО РАН Красноярский Межвузовский центр информационных технологий в экологическом образовании С.С. Замай, О.Э. Якубайлик ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ТЕХНОЛОГИИ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ УЧЕБНОЕ ПОСОБИЕ Красноярск 1998 УДК ББК С.С. Замай, О.Э. Якубайлик. Программное обеспечение и технологии геоинформационных систем: Учеб. пособие / Краснояр. гос. ун-т. Крас- ноярск, 1998. 110 с. Учебное пособие посвящено программному обеспечению и техноло- гиям геоинформационных систем (ГИС). Рассмотрены области примене- ния ГИС, вопросы их практического использования для решения различ- ных прикладных задач. В обзоре технологий ввода и обработки простран- ственной информации изложены общие принципы и требования к наборам данных программного обеспечения ГИС, проанализированы распростра- ненные обменные форматы пространственных данных. Дана оценка ГИС конечного пользователя, инструментальных программных средств разра- ботки. На примере библиотеки классов GeoConstructor™ обозначены ос- новные проблемы, возникающие при создании ГИС-приложений. Рассмот- рены способы построения многопользовательских геоинформационных систем. Учебное пособие подготовлено в рамках работ по проекту ФЦП «Ин- теграция» № 162 и апробировалось на занятиях со студентами в рамках деятельности Межвузовского ГИС-центра, поддержанной проектом ФЦП «Интеграция» № 68. Рис. 21, табл. 1, библ. 20 назв. Рецензенты: д.ф.-м.н., профессор А.Н. Горбань, зав. лаб. Инсти- тута вычислительного моделирования СО РАН; к.ф.-м.н., профессор Г.М. Рудакова, зав. кафедрой информационных технологий СибГТУ Редактор О.Ф. Александрова Корректор Т.Е. Быстригина © С.С. Замай, 1998 ISBN О.Э. Якубайлик, 1998 2 Содержание ПРЕДИСЛОВИЕ 6 1. ПЕРВОЕ ЗНАКОМСТВО С ГИС 8 1.1. Что такое ГИС? 8 1.2. Области применения ГИС 10 Местные администрации 10 Коммунальное хозяйство 10 Охрана окружающей среды 11 Здравоохранение 12 Транспорт 13 Розничная торговля 13 Финансовые услуги 14 1.3. Как это делается... 14 1.4. Тенденции программного обеспечения ГИС 16 1.5. Что есть что 17 1.6. А как она устроена? 18 2. ИСТОЧНИКИ ИСХОДНЫХ ДАННЫХ И ИХ ТИПЫ 19 2.1. Общегеографические карты 20 2.2. Карты природы 21 2.3. Карты народонаселения 23 2.4. Карты экономики 24 2.5. Карты науки, подготовки кадров, обслуживания населения 26 2.6. Политические, административные и исторические карты, комплексные атласы 27 2.7. Материалы дистанционного зондирования 28 3 3. ТЕХНОЛОГИИ ВВОДА И ОБРАБОТКИ ПРОСТРАНСТВЕННОЙ ИНФОРМАЦИИ 29 3.1. Сбор и систематизация данных 29 3.2. Подготовка и преобразование данных 31 3.3. Обработка и анализ данных при эксплуатации ГИС 35 3.4. Описание обменных форматов ГИС 38 VEC (ГИС IDRISI) 38 MOSS (Map Overlay and Statistic System) 38 GEN (ARC/INFO GENERATE FORMAT – ГИС ARCI/NFO) 40 MIF (MapInfo Interchange Format – ГИС MAPINFO) 41 4. РЕШЕНИЕ ЗАДАЧ В ГИС КОНЕЧНОГО ПОЛЬЗОВАТЕЛЯ 45 4.1. Классификация программных средств ГИС 45 4.2. Оценка инструментальных средств ГИС 47 Поддержка моделей пространственных данных 47 Функции пространственного анализа 48 Средства ввода/вывода пространственной информации 51 Средства преобразования форматов 51 5. ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА РАЗРАБОТКИ ГИС-ПРИЛОЖЕНИЙ: GEOCONSTRUCTOR™ 52 5.1. GeoConstructor™ как инструмент для создания ГИС- приложений 53 5.2. Внедрение GeoConstructor в среду разработки 54 5.3. Создание картографических композиций 57 5.4. Управление набором слоев и изображением карты 59 5.5. Работа с объектами: навигация, поиск, выборка 62 5.6. Привязка внешних баз данных 65 5.7. Тематическое картографирование 66 5.8. Обработка ошибок и управление мышью 67 4 5.9. Класс gisMap 69 6. ОБЗОР НЕКОТОРЫХ ГИС 70 6.1. Программные продукты ESRI 70 Модули расширения системы ARC/INFO 74 6.2. GeoGraph/GeoDraw для Windows 78 GeoGraph для Windows 78 GeoDraw для Windows 81 6.3. Программное обеспечение Panorama 83 Назначение программы 83 Структура программного обеспечения 85 Возможности программного обеспечения 86 Векторная карта 88 7. СПОСОБЫ ПОСТРОЕНИЯ МНОГОПОЛЬЗОВАТЕЛЬСКИХ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ 92 7.1. Локальная ГИС 95 7.2. Несколько пользователей разделяют один комплект файлов с геоинформацией 96 7.3. Геоинформационные системы с большим количеством пользователей 97 7.4. Технологии internet/intranet 99 ЗАКЛЮЧЕНИЕ 105 КОНТРОЛЬНЫЕ ВОПРОСЫ 107 ЛИТЕРАТУРА 108 5 Предисловие В настоящем учебном пособии представлен обзор программного обес- печения и технологий геоинформационных систем (ГИС). Рассмотрены об- ласти применения ГИС, вопросы их практического использования для ре- шения различных прикладных задач. В обзоре технологий ввода и обра- ботки пространственной информации представлены общие принципы, тре- бования к наборам данных, используемым в программном обеспечении ГИС. Особое внимание уделено обменным форматам пространственных данных, подробные описания которых позволят использовать это издание как справочник. В разделе, посвященном ГИС конечного пользователя, обсуждены ос- новные категории этого программного обеспечения, дана оценка инстру- ментальных средств. Подробно рассмотрены методы построения ГИС-при- ложений – на примере инструментальной библиотеки GeoConstructor™ (разработка ЦГИ Института географии РАН), а также вопросы интеграции ГИС с системами баз данных. Описанные в пособии технологии используются авторами в проект- ной деятельности студенческих коллективов, направленной на создание макетов наукоемких информационных систем для решения территориаль- но-ориентированных задач. Деятельность организована в рамках Межву- зовского центра информационных технологий в экологическом образова- нии, ее результаты используются при реализации региональных программ и проектов информатизации. Программное обеспечение поставлено при содействии ГИС Ассоциации России компаниями ЦГИ ИГ РАН (GeoDraw/ GeoGraph), GeoSpeсtrum International (Panorama), Epsylon Technologies (Baikonur). Межвузовский центр информационных технологий учрежден не- сколькими вузами г. Красноярска: госуниверситетом (КГУ), техническим 6 университетом (КГТУ), технологическим университетом (СибГТУ), педу- ниверситетом (КГПУ). Его деятельность финансово поддерживается Крас- ноярскими краевым и городским экологическими фондами, грантом Феде- ральной целевой программы Интеграция № 68. Центр базируется в Инсти- туте вычислительного моделирования СО РАН в Академгородке. Исходными материалами для этого пособия послужили статьи и тези- сы ряда конференций, организованных ГИС Ассоциацией России, пресс- релизы и официальные материалы фирм-производителей и поставщиков программного обеспечения ГИС, а также немалое число журнальных ста- тей и монографий. Выражаем свою искреннюю благодарность всем авто- рам упомянутых материалов. С авторами можно связаться по e-mail – [email protected]. 7 1. Первое знакомство с ГИС “Лет десять назад, когда всё только начиналось, казалось: вот на экране монитора мы видим карты и можем наносить различны- ми обозначениями, например, содержание вредных веществ. Полу- чалась очень наглядная и простая картинка, и все “зрители”, от го- сударственной политики до муниципального управления, и даже учёные – млели от удовольствия, разглядывая содержимое экрана. Но всё имеет свой предел, и сейчас уже произошло насыщение по- добными вещами”. Из материалов ГИС-Ассоциации. 1.1. Что такое ГИС? Смысловая и содержательная трактовка термина географические информационные системы, или ГИС, сильно зависит от профессиональ- ных интересов дающего определение. Если послушать некоторых, то мож- но подумать, что решить проблемы вашей организации, равно как и миро- вые можно только с помощью ГИС. Конечно, ГИС применима для очень большого числа приложений в различных предметных сферах, и с её по- мощью многие задачи можно решать быстрее и эффективнее. Но всегда следует помнить, что ГИС – это только набор великолепных инструментов, по-разному применяемых специалистами для их решения. Поэтому важно понимать, каким образом можно увеличить эффективность деятельности организации с помощью ГИС. Точное определение ГИС дать очень сложно, поскольку при работе она может рассматриваться на нескольких уровнях, и для различного при- менения будет означать разные вещи. Для некоторых ГИС – набор про- граммных инструментов, используемых для ввода, хранения, манипулиро- вания, анализа и отображения географической информации (рис. 1). Это 8 техническое определение, отражающее историю развития ГИС как объе- динения средств автоматизации проектирования (CAD) с цифровой карто- графией и программами баз данных (СУБД). Для других ГИС может быть образом мышления, способом принятия решений в организации, где вся информация соотносится с пространством и хранится централизованно. Это скорее стратегическое определение. Важно понимать, что ГИС может не оказаться решением ваших проблем и потребует некоторых размышле- ний для успешного выполнения задач. ГИС – это система, состоящая из трех компонентов, каждый из которых необходим для успеха: пространственных данных, аппаратно-програм- мных инструментов и проблемы, как объекта решения. Причем проблема служит главным компонентом, заставляющим выбирать и способы переда- Рис. 1. Карта Красноярска в программе GeoGraph для Windows. Создана в Тех- нологическом центре ГИС, ИВМ СО РАН 9 чи, хранения представления, анализа данных, и программные инструмен- тальные средства, и технологии создания той или иной предметно-ориен- тированной информационной системы. 1.2. Области применения ГИС Местные администрации Задачи управления муниципальным хозяйством – одна из крупнейших областей приложений ГИС. В любой сфере деятельности местной админи- страции (обследование земель, управление землепользованием, замена су- ществующих бумажных записей, управление ресурсами, учёт состояния собственности (недвижимости) и дорожных магистралей) применимы ГИС. Они могут использоваться также на командных пунктах управления центров по мониторингу и в службах быстрого реагирования. ГИС – не- отъемлемый компонент (инструментальный, технологический, программ- ный) любой муниципальной или региональной информационной системы управления. Коммунальное хозяйство Организации, обеспечивающие коммунальные услуги, наиболее ак- тивно используют ГИС для построения базы данных об основных средст- вах (трубопроводы, кабели, насосы, распределительные станции и т.п.), которая является центральной частью в их стратегии информационной технологии. Обычно в этом секторе доминируют ГИС, обеспечивающие моделирование поведения сетей в ответ на различные отклонения от нор- мы. Наибольшее применение находят системы автоматизации картографи- рования и управления основными средствами для поддержки "внешнего планирования" в организации: прокладка кабелей, расположение задвижек, щитов обслуживания и др. (рис. 2). 10

Программные обеспечения ГИС делятся на пять основных используемых классов. Первый наиболее функционально полный класс программного обеспечения - это инструментальные ГИС. Они могут быть предназначены для самых разнообразных задач: для организации ввода информации (как картографической, так и атрибутивной), ее хранения (в том числе и распределенного, поддерживающего сетевую работу), отработки сложных информационных запросов, решения пространственных аналитических задач (коридоры, окружения, сетевые задачи и др.), построения производных карт и схем (оверлейные операции) и, наконец, для подготовки к выводу на твердый носитель оригинал-макетов картографической и схематической продукции. Как правило, инструментальные ГИС поддерживают работу, как с растровыми, так и с векторными изображениями, имеют встроенную базу данных для цифровой основы и атрибутивной информации или поддерживают для хранения атрибутивной информации одну из распространенных баз данных: Paradox, Access, Oracle и др. Наиболее развитые продукты имеют системы run time, позволяющие оптимизировать необходимые функциональные возможности под конкретную задачу и удешевить тиражирование созданных с их помощью справочных систем. Второй важный класс - так называемые ГИС-вьюверы, то есть программные продукты, обеспечивающие пользование созданными с помощью инструментальных ГИС базами данных. Как правило, ГИС-вьюверы предоставляют пользователю (если предоставляют вообще) крайне ограниченные возможности пополнения баз данных. Во все ГИС-вьюверы включается инструментарий запросов к базам данных, которые выполняют операции позицирования и зуммирования картографических изображений. Естественно, вьюверы всегда входят составной частью в средние и крупные проекты, позволяя сэкономить затраты на создание части рабочих мест, не наделенных правами пополнения базы данных. Третий класс - это справочные картографические системы (СКС). Они сочетают в себе хранение и большинство возможных видов визуализации пространственно распределенной информации, содержат механизмы запросов по картографической и атрибутивной информации, но при этом существенно ограничивают возможности пользователя по дополнению встроенных баз данных. Их обновление (актуализация) носит цикличный характер и производится обычно поставщиком СКС за дополнительную плату. Четвертый класс программного обеспечения - средства пространственного моделирования. Их задача - моделировать пространственное распределение различных параметров (рельефа, зон экологического загрязнения, участков затопления при строительстве плотин и другие). Они опираются на средства работы с матричными данными и снабжаются развитыми средствами визуализации. Типичным является наличие инструментария, позволяющего проводить самые разнообразные вычисления над пространственными данными (сложение, умножение, вычисление производных и другие операции).

Пятый класс, на котором стоит заострить внимание - это специальные средства обработки и дешифрирования данных зондирований земли. Сюда относятся пакеты обработки изображений, снабженные в зависимости от цены различным математическим аппаратом, позволяющим проводить операции со сканированными или записанными в цифровой форме снимками поверхности земли. Это довольно широкий набор операций, начиная со всех видов коррекций (оптической, геометрической) через географическую привязку снимков вплоть до обработки стереопар с выдачей результата в виде актуализированного топоплана. Кроме упомянутых классов существует еще разнообразные программные средства, манипулирующие с пространственной информацией. Это такие продукты, как средства обработки полевых геодезических наблюдений (пакеты, предусматривающие взаимодействие с GPS-приемниками, электронными тахометрами, нивелирами и другим автоматизированным геодезическим оборудованием), средства навигации и ПО для решения еще более узких предметных задач (изыскания, экология, гидрогеология и пр). Естественно, возможны и другие принципы классификации программного обеспечения: по сферам применения, по стоимости, поддержке определенным типом (или типами) операционных систем, по вычислительным платформам (ПК, рабочие Unix-станции) и т д. Стремительный рост количества потребителей ГИС-технологий за счет децентрализации расходования бюджетных средств и приобщения к ним все новых и новых предметных сфер их использования. Если до середины 90-х годов основной рост рынка был связан лишь с крупными проектами федерального уровня, то сегодня главный потенциал перемещается в сторону массового рынка. Это мировая тенденция: по данным исследовательской фирмы Daratech (США), мировой рынок ГИС для персональных компьютеров в настоящий момент в 121,5 раза опережает общий рост рынка ГИС-решений. Массовость рынка и возникающая конкуренция приводят к тому, что потребителю за ту же или меньшую цену предлагается все более качественный товар. Так, для ведущих поставщиков инструментальных ГИС стала уже правилом поставка вместе с системой и цифровой картографической основы того региона, где распространяется товар. Да и сама приведенная классификация ПО стала реальностью. Еще буквально два-три года назад функции автоматизированной векторизации и справочных систем можно было реализовать только с помощью развитых и дорогостоящих инструментальных ГИС (Arc/Info, Intergraph). Прогрессирующая тенденция к модульности систем, позволяющая оптимизировать затраты для конкретного проекта. Сегодня даже пакеты, обслуживающие какой-либо технологический этап, например векторизаторы, можно приобрести как в полном, так и в сокращенном наборе модулей, библиотек символов и т.п. Выход целого ряда отечественных разработок на "рыночный" уровень. Такие продукты, как GeoDraw / GeoGraph, Sinteks / Tri, GeoCAD, EasyTrace, обладают не только значительным количеством пользователей, но и имеют уже все атрибуты рыночного оформления и поддержки. В российской, геоинформатике есть некая критичная цифра работающих инсталляций - пятьдесят. Как только вы ее достигли, дальше есть только два пути: или резко вверх, наращивая число своих пользователей, либо - уход с рынка из-за невозможности обеспечить необходимую поддержку и развитие своему продукту. Интересно, что все упомянутые программы обслуживают нижний ценовой уровень; другими словами, в них найдено оптимальное соотношение между ценой и напором функциональных возможностей именно для российского рынка.

С.С. Смирнов (Южный НИИ морского рыбного хозяйства и океанографии)

При создании геоинформационной системы (ГИС) неизбежной является проблема выбора программного обеспечения.

Известные программные продукты ведущих мировых компаний-разработчиков программного обеспечения ГИС при всех достоинствах обладают одним существенным недостатком высокой стоимостью, составляющей тысячи и десятки тысяч долларов. В настоящее время на рынке геоинформатики появляется все больше недорогих или бесплатных, но при этом качественных разработок.

Во многом это заслуга организации Open Geospatial Consortium (OGC, http://www.opengeospatial.org), объединяющей 339 компаний, государственных и научных учреждений. Основные цели, которые ставит перед собой OGC, разработка общедоступных стандартов, форматов данных и спецификаций, использующихся в геоинформационных технологиях, а также повсеместное внедрение этих технологий в различных отраслях.

Сервер геоинформационной базы данных
В том случае, если в создаваемой ГИС планируется задействовать не только набор файлов (например, Shape-файлы и растровые изображения), но и использовать информацию, хранящуюся в базе данных, то, скорее всего, не обойтись без сервера геоинформационной базы данных (geodatabase), который к тому же может обеспечить одновременную работу для группы пользователей в режиме «клиент-сервер».

В этом случае можно порекомендовать MySQL Server (http://www.mysql.com). MySQL не уступает по основным показателям таким признанным СУБД как Oracle и Microsoft SQL, при этом данная СУБД относится к разряду систем с открытым кодом и является бесплатной для некоммерческого использования, что, безусловно, выгодно отличает ее от вышеупомянутого дорогостоящего программного обеспечения. Начиная с версии 4.1 в MySQL была введена поддержка пространственных типов данных (Spatial extensions).

Программный сервер СУБД MySQL функционирует в среде Windows, управление процессом осуществляется с помощью команд, вводимых с консоли (рис. 1). Администрирование СУБД становится более удобным при использовании программного обеспечения с графическим интерфейсом (рис. 2), которое можно бесплатно скачать с сайта MySQL.

К серверам геоинформационных баз данных также относится СУБД
PostgreSQL (http://www.postgresql.org). Как и MySQL, эта СУБД поддерживает пространственные типы данных (расширение PostGIS) и является бесплатной.

Программное обеспечение ГИС
Переходя к рассмотрению программного обеспечения для ГИС-клиентов, взаимодействующих с вышеупомянутыми СУБД, можно предложить две новые и весьма перспективные программы: Viewport и KOSMO , которые в настоящее время доступны для скачивания с сайтов разработчиков со статусом «Бета-версия» и «Release candidate» соответственно. Официальный выход первой версии этих программ планируется в ближайшие 2 3 мес. мультики

Viewport (разработчик Texel corporation, http://www.viewportimaging.com/) многофункциональное программное обеспечение для работы с пространственными данными, поддерживающее 37 форматов файлов (ESRI Shape, MapInfo Vector File, ARC/INFO ASCII Grid, USGS DEM, EOSAT Fast Format, ERDAS Imagine, GIF, JPEG, TIFF и др.) и 9 источников данных (ArcSDE, Informix Datablade, MySQL, PostgreSQL, Oracle Spatial, ODBC RDBMS, Web Mapping Service и др.).

Простой и удобный интерфейс, выбор картографической проекции, возможность создания SQL-запросов с последующим отображением их результатов на карте, масса изменяемых параметров графических объектов (изменяемая прозрачность, много видов штриховки/заливки, указание толщины и типа линии и пр.), экспорт в различные форматы все это делает программу весьма привлекательной для использования.


Рис. 3. Экранная копия Viewport

Стоимость одной лицензии 99,95 дол., однако возможно, что для некоммерческих (non-profit) учреждений лицензии будут предоставляться бесплатно. В настоящее время с сайта разработчика можно скачать бесплатную, но обладающую рядом ограничений, бета-версию программы.

KOSMO (разработчик SAIG, http://www.saig.es/en) представляет собой полноценную ГИС, предоставляемую совершенно бесплатно. Данная программа является результатом объединения собственных разработок компании SAIG и ряда проектов с «открытым кодом» (JUMP, JTS, GeoTools и др.).

KOSMO позволяет подключаться к геоинформационным базам данных (Oracle Spatial, MySQL, PostgreSQL-PostGIS), располагает большим набором инструментов для работы с векторными данными, поддерживает наиболее распространенные форматы растровых данных (TIFF, GeoTIFF, ECW, MrSid и др.), имеет хороший редактор стилей и конструктор запросов, обладает способностью расширения функциональности за счет подключения дополнительных модулей, и все это лишь небольшая часть возможностей программы.


Рис. 4. Экранная копия KOSMO

Кроме того, возможен выбор языка интерфейса. Помимо английского, испанского и португальского языков, скоро будет доступен и русский, поскольку автор данной статьи в настоящее время работает над переводом интерфейса программы на русский язык.

ГИС KOSMO разработана в среде Java, поэтому рекомендуется скачивать дистрибутив, в который уже включены модули JRE и JAI.

В ситуации, когда не требуется разрабатывать сложную ГИС, а необходимо только отобразить имеющиеся картографические данные, можно порекомендовать бесплатные ГИС-вьюеры: Christine GIS Viewer (

ArcGIS -- семейство программных продуктов американской компании ESRI, одного из лидеров мирового рынка геоинформационных систем. ArcGIS построена на основе технологий COM, .NET, Java, XML, SOAP. Новейшая версия -- ArcGIS 10.

Рис.3.1

ArcGIS позволяет визуализировать (представить в виде цифровой карты) большие объёмы статистической информации, имеющей географическую привязку. В среде создаются и редактируются карты всех масштабов: от планов земельных участков до карты мира.

Также в ArcGIS встроен широкий инструментарий анализа пространственной информации.

ArcGis используется в самых различных областях:

  • · Земельный кадастр, землеустройство
  • · Учёт объектов недвижимости (см.: АИС учёта объектов недвижимости, ИСОГД)
  • · Инженерные коммуникации
  • · МВД и МЧС
  • · Телекоммуникации
  • · Нефть и газ
  • · Экология
  • · Государственная пограничная служба
  • · Транспорт
  • · Лесное хозяйство
  • · Водные ресурсы
  • · Дистанционное зондирование
  • · Геология и недропользование
  • · Геодезия, картография, география
  • · Бизнес
  • · Торговля и услуги
  • · Сельское хозяйство
  • · Образование
  • · Туризм

Данное программное обеспечение используется для всех видов компьютеров: настольных (ArcView, ArcEditor, ArcInfo), серверных(ArcGIS Server, ArcSDE) и карманных (ArcPad).

Intergraph GeoMedia

GeoMedia -- это ГИС-технология из семейства ГИС-продуктов.

Технология GeoMedia является архитектурой ГИС нового поколения, позволяющая работать напрямую без импорта/экпорта одновременно с множеством пространственных данных в различных форматах. Это достигается применением специальных компонентов доступа к данным -- Intergraph GeoMedia Data Server.


Рис.3.2

На сегодняшний день пользователям GeoMedia доступны компоненты для всех основных индустриальных форматов хранилищ цифровых картографических данных: ArcInfo, ArcView, ASCII, AutoCAD, FRAMME, GeoMedia, GML, MapInfo, MGE, MicroStation, Oracle Spatial и др., включая растровые, табличные и мультимедийные данные. При этом пользователи могут разработать собственный GeoMedia Data Server на основе шаблона для произвольного формата. Компоненты Intergraph GeoMedia Data Server позволяют на одной карте увидеть и одновременно проанализировать данные из произвольного количества источников, хранящихся в разных форматах, системах координат, имеющие различную точность.

Такой подход позволяет сохранить инвестиции в уже существующие ГИС-решения, одновременно с этим перейдя на новый уровень интеграции информационных ресурсов предприятия. Семейство продуктов GeoMedia включает две базовые линейки продуктов -- настольные и серверные, плюс дополнительные прикладные модули.

GeoMedia является прообразом первой версии международных стандартов в области ГИС, разрабатываемых Open GIS Consortium и, одновременно, является первой реализацией этих стандартов.

Intergraph GeoMedia - программное средство для получения, отображения и анализа географических данных из различных информационных систем. Используется на удаленных клиентских местах как универсальное средство доступа к традиционным ГИС, таким как MGE и FRAMME.

GeoMedia является одновременно настольной системой и средством для разработки собственных специализированных приложений. Кроме того, в GeoMedia встроены средства по компоновке карт, недоступные в других существующих ГИС.

Основные функции:

  • · Полный доступ к данным ГИС-проектов MGE, FRAMME (Intergraph), ESRI (ARC/Info), ESRI (ARC/View), MapInfo, файлам Bentley/MicroStation и AutoCAD.
  • · Пространственный анализ
  • · Полная интеграция географических данных из различных ГИС
  • · Настройка под требования пользователя
  • · Преобразования координат
  • · Отображение растровых файлов, поддержка различных форматов
  • · Построение буферных зон
  • · Построение тематических карт, символизация, размещение меток.
  • · Работа с Oracle SDO.

Программные средства географических информационных систем

1. Общая характеристика

Программные средства ГИС представляют собой совокупность в большей или меньшей степени интегрированных программных модулей, обеспечивающих реализацию основных функций ГИС. В общем случае можно выделить шесть базовых модулей:

1) ввода и верификации данных,

2) хранения и манипулирования данными,

3) преобразования систем координат и трансформации картографических проекций,

4) анализа и моделирования,

5) вывода и представления данных,

6) взаимодействия с пользователем.

Учитывая широкий спектр и весьма специфические особенности реализуемых функций, программное обеспечение геоинформационных систем в настоящее время составляет часть мирового рынка программного обеспечения. Известно достаточно большое количество коммерческих пакетов программного обеспечения ГИС, позволяющих выполнять разработку геоинформационных систем с определенными функциональными возможностями для конкретных территорий. Количество таких ГИС-пакетов измеряется многими десятками. Однако, если говорить о наиболее известных и широко применяющихся коммерческих ГИС-пакетах, то их количество может быть ограничено десятью-пятнадцатью.

По итогам исследований фирмы PC GIS Company Datatech (США), занимающейся анализом мирового рынка ГИС, первое место в рейтинге программных ГИС продуктов в последние годы занимает пакет MAPINFO, разработанный Mapping Information Systems Corporation (США) и имеющий около 150000 пользователей по всему миру. К наиболее популярным также относятся ГИС-пакет ARC/INFO, разработанный Калифорнийским институтом исследований природной среды (ESRI), и пакет географического анализа и обработки изображений IDRISI, созданный в Университете Кларка (США). Широкую известность имеют пакеты ATLAS*GIS фирмы Strategic Mapping Inc. (США) MGE фирмы INTERGRAPH (США), SPANS MAP/SPANS GIS Фирмы Tydac Technologies Corp. (США), ILWIS, разработанный в Международном институте аэрофотосъемки и наук о Земле (Нидерланды) SMALLWORLD GIS фирмы Smallworld Mapping Inc. (Великобритания) SYSTEM 9 фирмы Prime Computer-Wild Leitz (США), SICAD фирмы Siemens Nixdorf (Германия). Представляется необходимым назвать также ГИС пакет GEOGRAPH/GEODRAW, разработанный в Центре геоинформационных исследований Института географии Российской Академии наук, который по итогам исследований, проведенных в 1994 году в России, занимал третье место в рейтинге программных ГИС продуктов, а также WINGIS австрийской фирмы PROGIS, занявший пятую позицию в этом рейтинге. Несомненный интерес для исследований окружающей среды представляет ГИС пакет PC-RASTER, разработанный на географическом факультете университета города Утрехта (Нидерланды) и обладающий развитыми аналитическими возможностями.

2. Интерфейс пользователя ГИС

В зависимости от типа и назначения ГИС среда управления (интерфейс пользователя) обычно имеет несколько уровней. ГИС производит "информационные изделия" - списки, карты - которые позже используются для принятия решения различными категориями пользователей. Конечный пользователь в большинстве случаев может не взаимодействовать с системой непосредственно. Например, муниципальная система отчетов производит инвентаризационные списки, которые используются комитетами для выработки решений относительно различных хозяйственных мероприятий. Руководители комитетов не знают ничего относительно организации муниципальной системы, имея только концептуальное понимание о том, какая информация находится в ГИС и ее функциональных способностях. Однако менеджер системы должен иметь подробное представление о том, какая информация находится в базе данных и какие функции может выполнять ГИС. Системный аналитик или программист должен иметь еще более подробное понимание функциональных способностей конкретной прикладной ГИС. Конечный же пользователь взаимодействует с системой обычно через специального оператора, выдающего информацию как по стандартным, так и по индивидуальным запросам.

Степень сложности общения пользователя и ГИС определяется в первую очередь степенью проработки структуры базы данных, правильностью идентификации находящихся в базе данных объектов и наличием перекрестных ссылок между различными группами объектов. Получение какой либо информации из базы данных осуществляется в большинстве случаев при помощи специальных запросов, формируемых явным и неявным образом. Неявные запросы обычно уже программно реализованы и заложены в различные функциональные блоки системы фирмой-производителем программного обеспечения. Например, нажатие курсором мыши на пространственный объект, отображенный на экране, инициализирует алгоритм поиска "по местоположению" связанной с этим объектом атрибутивной информации. Явный запрос пишется пользователем (системным программистом ГИС) при помощи специального языка программирования (обычно SQL, иногда специально разработанный для данной системы язык) в текстовом редакторе, но в последнее время получили распространение диалоговые окна формирования запросов. Такие запросы могут сохранятся в специальной библиотеке и запускаться по мере необходимости.

Запросы могут значительно различаться по своему назначению и выполняемым в ходе их реализации алгоритмам. Простой запрос данных осуществляется с указанием конкретных идентификаторов объектов или точного местоположения и часто сопровождается указанием

Конкретных значений уточняющих параметров. Другие запросы осуществляют поиск объектов, удовлетворяющих более сложным требованиям. Имеются несколько различных типов поисковых запросов:

1. "Где объект X?". Здесь могут задаваться как точные атрибутивные характеристики искомого объекта, так и определенный диапазон этих характеристик. В некоторых случаях может задаваться радиус и сектор поиска относительно центральной точки, иногда буферная зона другого объекта.

2. "Что есть этот объект?". Объект идентифицирован ("выбран") при помощи диалогового устройства - мыши или курсора. Система возвращает признаки объекта, например, уличный адрес, имя владельца, Производительность нефтяной скважины, высоту над уровнем моря и

3. "Суммировать признаки объектов в пределах расстояния Х или внутри/снаружи определенной зоны". Комбинирование двух предыдущих запросов и статистических операций. "Какой самый лучший маршрут?". Определение оптимального маршрута по различным критериям (минимальная стоимость, минимальное постороннее воздействие, максимальная скорость) между этими двумя и более точками.

5. Использование отношений между объектами, например, поиск нижележащих элементов или определение крутизны уклона для цифровых моделей рельефа.

Для большинства приложений ГИС система должна работать в режиме реального времени: максимальное время, позволенное для ответа- несколько секунд. При достаточно частых обращениях к системе на первое место выдвигаются уже чисто эргономические требования к интерфейсу пользователя - меню и пиктограммы должны быть предпочтены текстовым командам, которые утомительны при наборе. Имеются несколько типов интерфейсов пользователя:

1. Команда, которую пользователь набирает в командной строке, например, С >. Пользователь должен следить за определенным системой синтаксисом команд, используя точную запись и правила пунктуации. Однако в некоторых ГИС таких команд может быть более 1000, очень неудобно для неопытных пользователей. Интерактивная помощь может сократить потребность в знании всех правил и синтаксиса, особенно для редко используемых команд.

2. Меню . Пользователь выбирает пункт меню, отвечающий за проведение определенной функции. Пункт меню представляет выбор, который является единственно возможными в это время. Следствия выбора могут быть отображены в специальном списке около каждого пункта. Однако, сложные системы меню утомительны при их постоянном использовании и не обеспечивают гибкость команд.

3. Пиктографические меню. Эта форма меню использует символические изображения для доступности смысла команд и упрощения управления. Пользователь управляет системой, используя пиктограммы для выполнения наиболее часто встречающихся функций и обычное меню для остальных. Многие пользователи лучше воспринимают символические системы и быстрее осваивают ГИС.

4. Окна. Интерфейс ГИС должен использовать преимущества характера пространственных данных. Имеются два естественных способа доступа к пространственным данным - через пространственные объекты и через их признаки. Современные сложные системы используют несколько экранных окон для отдельного вывода текстовых и графических данных. Окна позволяют одновременно выводить на экран несколько видов одной карты, например, в полном охвате и в увеличенном изображении.

5. Национальный язык интерфейса. Очевидные преимущества при использовании национального языка в системах меню и интерактивной помощи проявляются немедленно. Резко возрастает как скорость освоения системы, так и полнота использования ее функциональных возможностей. Большинство производителей программного обеспечения ГИС в настоящее время продвигают на иноязычные национальные рынки (стандарт - английский язык) "адаптированные" версии своих продуктов.

Многие оболочки ГИС совмещают несколько подходов к организации среды управления системой, создавая комбинированный интерфейс как с обычным "выпадающим" меню, так и с набором блоков пиктографических меню. Иногда дополнительно используется и командная строка, причем распознавание многих команд производится по их сокращенному виду (первые два-три символа).

Развитие аппаратного обеспечения определяет и развитие других типов интерфейса. Сенсорные дисплеи позволят пользователю выбирать объект или отдавать команды простым прикосновением пальца или специального указателя к определенной области экрана. Для некоторых типов прикладных ГИС, работающих с крупномасштабными моделями рельефа, возможно внедрение технологий "виртуальной реальности" при моделировании земной поверхности и находящихся на ней пространственных объектов: зданий, деревьев и т. д.

Программные средства ГИС - 4.5 out of 5 based on 2 votes




Top